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We consider the Swendsen-Wang dynamics for the two-dimensional Ising 
model at low temperature in the presence of a small negative magnetic field h 
and with plus boundary conditions at the boundary of an arbitrarily large 
square. We analyze in detail the tunneling from the metastable phase to the 
stable one. In particular, we obtain an upper bound on the tunneling time tp by 
explicitly constructing paths in the space of spin configurations that drive the 
system from the metastable phase to the stable one. In our analysis the 
transition takes place through the formation of droplets of the right phase inside 
the wrong one with side greater than a certain critical value lc. The values of the 
tunneling time and of lc coincide with those found for a single-spin-flip dynamics 
in finite volume by Jordao-Neves and Schonmann. 

KEY WORDS: Ising model; random cluster dynamics; stable and metastable 
phases; nucleation; critical droplets. 

I N T R O D U C T I O N  

In  this  pape r  we c o n t i n u e  the sys temat ic  analys is  of the S w e n d s e n - W a n g  
( S W )  (1) d y n a m i c s  s ta r ted  in  ref. 2. S W  is a r a n d o m  cluster  d y n a m i c s  
revers ible  wi th  respect  to the G i b b s  me as u re  for the Is ing  model .  A 

cons t ruc t ive  def in i t ion  of the a l g o r i t h m is p rov ided  at  the b e g i n n i n g  of 

Sect ion  1 a n d  for a d i scuss ion  of  its m a i n  features the reader  is referred to 
ref. 2. 

W e  shall  inves t iga te  the f e r romagne t i c  t w o - d i m e n s i o n a l  I s ing  m ode l  
w h e n  the inverse  t e m p e r a t u r e  fl is very large a n d  the ex te rna l  magne t i c  field 
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h is arbitrarily small. In ref. 2 we were able to show, for the above situation, 
the exponential convergence to equilibrium in the particular case of 
boundary conditions parallel to the external magnetic field. For the case of 
boundary conditions opposite to h it turned out that a much more delicate 
analysis was needed involving a detailed study of the metastable behavior 
of the system. This analysis is the content of the present paper. 

As is well known, the Ising model at low temperature and zero 
magnetic field exhibits a phenomenon of coexistence of two different 
phases with opposite nonzero magnetization. The configurations of the 
system have a kind of "symmetric double-welt structure" even in the 
thermodynamic limit. The two wells are related to the typical configura- 
tions characterizing the two opposite phases. For small h this features is in 
some sense preserved even though now the well corresponding to the phase 
parallel to h becomes deeper. The phase opposite to the field becomes 
metastable and does not correspond anymore to a true equilibrium state of 
the system on a macroscopic scale. The magnetic field h decides the phase 
no matter how small it is, but its effects become relevant only on a suitable 
scale diverging when h ~ 0, in the sense that only on large scales does the 
volume energy dominate the surface energy. From a dynamical point of 
view this means that if one starts with a typical configuration of the 
metastable phase (i.e., the majority of the spins are opposite to the field), 
then locally the system will undergo only "small fluctuations" around 
the false equilibrium for a certain amount of time (large if ~/h is large) 
until it will "tunnel" to the true equilibrium. This "tunneling" is a local 
phenomenon consisting in the homogeneous formation, through the whole 
volume, of many droplets (nuclei) of the new stable phase inside the 
metastable phase (homogeneous nucleation). The main physical feature of 
this transition is the existence of a critical value lc(h) for the size of the 
droplets. Droplets whose side is smaller then lc(h ) have the tendency to 
shrink, whereas the larger ones have the tendency to grow and there is an 
"activation energy" necessary to create them. 

In a recent paper Jordao-Neves and Schonmann (3) studied a single- 
spin-flip Glauber dynamics for the two-dimensional Ising model in a finite 
box with small, say positive, magnetic field, showing the metastable 
behavior in the limit /~ tending to Go. They were able to prove that the 
transition from the configuration with all spins opposite to the field to the 
configuration with all spins parallel to the field happens with a probability 
tending to 1 in the limit of large /J via the formation of a critical square 
"droplet" full of plus spins. Moreover, they found values for the critical size 
as well as for the typical time of the transition which are in agreement with 
what can be found on heuristic grounds using energetic arguments. 

In the present paper, in the case of SW dynamics, we describe the 
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nucleation phenomenon in an arbitrarily large (infinite) volume at very low 
temperature with plus boundary conditions and negative magnetic field. 
We find that locally the system has a behavior very similar to the one 
detected by Jordao-Neves and Schonmann for the Glauber dynamics (of 
range one). As a consequence of this analysis, we show, in particular, a 
result on the absence of persistence of large sets of spins with magnetization 
oposite to the field. This is the crucial point which is needed to prove, even 
in this case, the exponential decay to the equilibrium (see Theorem 2 of 
ref. 2; see also ref. 4 for the case of a single-spin-flip dynamics). More 
specifically, we show that, due to the homogeneous nucleation, after a 
sufficiently large time the negatively magnetized stable phase is formed in 
the whole bulk, whereas the influence of the plus boundary conditions has 
an effect only at a short distance from the boundary. We stress that the 
appearance of the new phase is a consequence of the simultaneous forma- 
tion of many large enough droplets of minus spins throughout the volume 
and that the tendency of these droplets to survive and to grow under the 
dynamics is due to an essentially local mechanism. 

The main result of the present paper is summarized in the following 
theorem. Let QL be the square of edge L in 7/2 centered at the origin. We 
denote by a ~ { - 1, + 1 }QL a generic spin configuration in QL and by a t its 
evolution at time t according to the SW dynamics on QL with plus 
boundary conditions (see Section 1). Let, for any A ~ QL, s~ be the event 

s ~ =  {3cr~ { - 1 ,  +l}QLsuch that ~r~(x)= + I V x ~ A }  

T h e o r e m .  There exists c > 0 such that, given h < 0 sufficiently small 
in absolute value, there exist constants /~o(h), Lo(h) such that i f / />/~o,  
L > Lo(h), t >/exp[/?(4/thl + c)]; then 

P ( ~ )  ~< exp[ -k(/~)IAi ] 

provided dist(A, ~?QL) > Lo(h), where k(fi) ~ oo as fl ~ oo. 

Clearly, using the uniformity in the initial configuration, we only need 
to prove the above bound for t = t~ with 

In the rest of the paper we set 
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1. D E F I N I T I O N S  A N D  S K E T C H  OF THE PROOF 

Let us first give some notation and a constructive definition of the SW 
algorithm for the two-dimensional Ising model with external magnetic field 
h and + boundary conditions. 

Let A ~ Z 2 be a finite box; any subset C c  A such that any two points 
x, y E C can be connected by a nearest neighbor (n.n.) path of sites in C 
is a "cluster." 

By C(x~,.,xo~ we will denote the cluster consisting of exactly the sites 
X l ~ . . . , X  n �9 

At each integer time t, to each bond b in A, b = (x, y), I x -  y] = 1, in 
A we associate a bond variable nb(t) and a random number vb(t ) uniformly 
distributed in [0, 1 ]; to each cluster C ~ A we associate a random variable 
~c(t) uniformly distributed in [0, 1 ]. 

Given a spin configuration at time t :  {at(X)}xeA~{--1, +1}  A we 
construct a configuration at+~ with the following rule: 

1. Determination of the bond variables b(~, y)(t + 1): 

if a,(x)~at(y), then n ( x , y ) ( t + l ) = - I  

if a~(x)=az(y), then n(x ,y ) ( t+l )=-I  if v(~,y)(t)<e ~ 

n ( x , y ) ( t+ l )= l  if v(~,y)(t)>~e /~ 

. 

~t+l(x)= +1 

~ , + l ( x )  = - 1  

Determination of the new configuration: consider the clusters such 
that x, y ~ C if and only if there exists a connected path of bonds 
bl ..... bn going from x to y with nbk(t+ 1)=  1 Vk= 1 ..... n. Then 

V x e C  if C c ~ ? A r  and in this case we s e t C = C o o  

or if ~c(t)<~(l +e flhlCl)-I 

VxeC if ~c(t)>(l+e-~htcl) ~ 

where ICI = # { x e C } .  

Let us now fix some more notation. 

(a) Events in our basic probability space are denoted by capital 
script letters, e.g., ~ ,  ~ ,  ~ ..... 

(b) For any x~A,  L even QL will denote the intersection between 
the square of side L, centered in x, and the box A. 

(c) An event d will be called (x, L)-cylindrical if ~? depends only on 
the random variables {vb(t), ~c(t)}t~o for b and C inside QL. 
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Remark. If sr s~ are (x~, L+)-cylindrical, i = 1, 2, and dist(x~, x2) > 
(LI + L2)/2, then clearly 

P(Sr ~ 4 )  = P(dx) P(d~) 

(d) By "cut of the bond b" we denote the occurrence of the event 
{Vb(t ) < e ~}. The cut of the bond b = (x, y) will be graphically 
represented by 

I 
I 
! 
| 

x ,  y 

(e) If ~ =  {Vb(t), ~C(t)}b,C,t denotes a realization of the basic 
random process, we denote by Stco the shifted realization: 

(S~co) = {%(t + s), r + s)}b.c,, 

Similarly, if sr denotes an event, then we set 

s , d  = {~o; S,~o e d }  

Let us now give a sketch of the strategy. The main idea behind the 
proof of the theorem is to show that: 

1. Among the n points of the set A there are at least 1 ~n sites xi, ,..., xik, 
k>n/4 ,  with dist(xi,,x+~)>L, Vl, m e [ 1  ..... k],  such that within 
the time t~ ~ exp{4fl/[h[ } the dynamics, with large probability, has 
been able to grow a large droplet of minuses around x b, j = 1,..., k, 
e.g., Q2x~, with L >> Lo >> lc, using only the variable {%(t), ~c(t)} 

�9 . 4 L  0 �9 with b and C entirely reside Qx,+, J = 1,..., k. 
2L0 2. Once the droplet Q x, of minuses is formed at time ~i, < t~, then 

it is stable'  under the dynamics for a time scale much larger than 
the critical time t~. 

In turn, the growth of the droplet O zL~ will be decomposed into two 
�9 - - x  9 

parts corresponding to two different regimes: 

(a) The subcritical regime, namely when the dynamics builts up a 
droplet of - 1  of size lc(h)= [-2/[hl] + 3  around x r  The time 
scale involved in this process is of order exp{fl(2l~(h))} ~ t~. For 
a precise definition of t~ see Section 2, (2.16). 

(b) The supercriticaI regime, when, starting from the droplet of size 
l~(h) around x+, the dynamics enlarges it up to O 2L~ The time 

x . l X t  j - 
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scale involved in this second process is quite independent of the 
exact value of Lo > lc, and it is of order exp(4fl), provided L o is 
independent of ft. 

Let us now make the above ideas more precise. In Section 2.3 we will 
explicitly construct for any x~ A with dist(x, ~A)~>4Lo an event gx such 
that: 

(i) #x is (x, 4Lo)-cylindrical (1.1) 

(ii) P(#x)--+ 1 as fl--+ oo (1.2) 

(iii) The event 

Sxr~{Vt<ta,~C;Cc~Q2L~ ICl>Lo;C= +attimet} (1.3) 

implies the event 

{3z~ < t~; a~x(y) = -1  Vy e Q2Lo} n {a,e(x ) = --i } 

for any initial configuration a. 
With the help of the event gx we will now define the events ~ and 

as follows: 

-- {3 at least 3n points {x;~} cA 

such that u and Vt < tr ~C such that 

Cc~Q2x~afg, lcl>go, C -- + at time t} (1.4) 

~ {3 at least 3n points {x~,} e A such that d~ 

occurred for any j} (1.5) 

Then we write 

P(d) <<. P(d n Y) n ~) + p(~c) + p(~C) (1.6) 

where d is the event defined at the end of the introduction. Using 
(1.1)-(1.5), we get immediately that the first term in the rhs of (1.6) is zero. 
The second and third terms are estimated in the following two lemmas. 

k e m m a  1.1. For any fl large enough, 

P(~C) <. 2" exp ( - f l  l~6 Lon + ;)  

I . emma 1.2. For any L>Lo>lc(h) and fl large enough, 

p(~c) ~< e-k(/~)'/4 
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with 

1 
k(fl) = l~ [24( 1 - P ( g x ) ) ]  

and k(fl) ~ oo as fl --* oo because of the crucial p roper ty  

P ( ~ x ) ~ l  as f l ~  

It  is clear that  (1.6) together  with the lemmas  prove  the main  theorem. 
The p roof  of the lemmas,  based on rather  simple expansions,  similar 
to the low- tempera ture  expansions of statistical mechanics,  is given in 
Appendix A. 

2. C O N S T R U C T I O N  OF T H E  E V E N T  ~x: T H E  S U B C R I T I C A L  
R E G I M E  

The section and the next one are devoted to the construct ion of the 
event gx with the propert ies  described in Section 1. 

Fo r  simplicity, we take x = O. Next  we introduce two time scales: 

T2 -- [exp(2fl + 6fl)], 

T4 = [exp(4fl + 6fl)], 

and a sequence of t ime intervals: 

O<6<lhl 
(2.1) 

O<fi~lh[ 

I f  -= [ ( 4 L o ) e ( j -  1 ) I"2, (4Lo)2 jT : )  

I~ =- [ ( 4 L o ) : ( j -  1)7"4, (4Lo):jT4), j = l ,  2 .... 
(2.2) 

The in t roduct ion of these t ime scales is justified by the following 
heuristic considerat ions:  if at t ime t = 0 we have a region of - 1  like the 
one of Fig. 1, then the time necesary to observe a var ia t ion in the shape of 

+ 
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+ + + -t- + + + 

+ + + + + 

+ 

+ 

+ 

+ 

+ 

Fig. 1 
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our droplet is of order exp(2fl), since we need to cut at least two bonds 
(the dashed ones in Fig. 1, for example), provided that the whole droplet 
does not flip to + 1 before. This last hypothesis is satisfied with large 
probability if Ih[ times the area of the droplet is >2. 

However, the time necessary to enlarge, say, a square l by 1 of - 1  
spins to, e.g., a rectangle I by ( l+  1) is of order exp(4fl). This is so because 
one has first to create a protuberance like the one involed in Fig. 2, and 
this requires a cutting of four bonds (the dashed ones) and subsequently, 
with successive cutting of only two bonds, the protuberance expands to a 
full new line. This second part of the process requires only a time of order 
exp(2fl) and thus the dominant time scale is exp(4fi). 

Given the above time scales, we will construct the set go as 

go = { 3j, 0 ~< j < t/~ exp( - 2 f i  - 26/~) such that ~sub(j) m ~super(j) holds } 

where gsub(j) and gsuper(j) are two events such that for any j :  

(a) gsob(j), gsuper(j) are (0, 4Lo)-cylindrical. 

(b) d~ depends only on the process 

{vb(t),{c(t)} for t< j .  T2 

(C) ~super(j) depends only on the process 

{ve(t),{c(t)} for te(jT2, tl3 ) 

(d) If {vb(t), {c(t)} ~gs~b(j) C~o ,  where ~'o is given by 

~o = {~ t ~< t~; at time t3C = + with ]C[ i> L o and C c~ QzL~ # ~ } 

+ 

+ 

+ 

+ 
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+ 

+ 

+ + + + + + + + + 

-I- + 

-I- + 

+ i +  
! 

I 
+ i +  

i 

+ + 

+ + + + + + + + + 

Fig. 2 
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then for any a e { -  1, 1 }A 

aj. T2(X) = --1 VX e Q~ 

(e) If {vb( t ) , r  then for any ere { - 1 , 1 }  A 
such that a ( x ) =  - 1  Vx e QI d we have 

(f) We have 

D 2 L 0  ~rt~(x). . = - 1  Vx ~5 0 

P(go) ~ 1 as /~---, oo 

In this section we will construct only gsub(j); the construction of 
~super(j) is postponed to Section 3. 

D e f i n i t i o n .  The interval 12 is good if: 

(a) ~s e 

(b) ~s e 
C =  + a t s .  

(c) ;~s~ 
C =  

(c) ~s 

(d) 

I~ such that there are three or more cuts at time s in {)4Lo ~ 0  " 

I~ such that there are two cuts at time s and 3C c Q4C0 with 

I12 such that there are two cuts at time s and 3C c Q4oLO with 
+ a t  s. 

I 2 such that there exists a C cQ4L~ C = +  at time s and 

Ihl ICI/> 3. 
Vi<<.(4Lo)ZVyeQ 4L~ 3st(i, y ) e  [ ( i -  I)T2,  iT2], / =  1 ..... 6, such 
that at time st we have the cuts: 

Y Y 
r . . . . .  I i i i i . . . . .  

I I i I I I V 
| I I I I I 

Y Y Y 

l=l 1=2 1=3 1=4 1=5 1=6 

and C{y} = - 

(e) At time (4Lo)2T2 there are no clusters C c  Q4Lo, C =  +. 

An analogous definition holds for I~, j >  1. The main points behind 
the above definition are that: (1) if the interval 12 is good, then it has a 
tendency to enlarge and regularize the shape of the droplet of minuses in 

822/62/1-2-10 
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Q4L0 of the initial configuration or, and (2) most of the intervals 12 are good o 
in the sense that 

P(I)  is good) ~ 1 as fl --* 0 

More precisely: 

L e m m a  2.1. Let Rll,t2 be a rectangle with sides ll, 12 such that 
Rll,t2 c Q2C0 and let A c Rh,z2 be a cluster enjoing the property ~ ,  where N: 
(a) the smallest rectangle containing A is Rh,t~, (b) it is not possible to 
disconnect A into parts with only one cut. 

Then if ]A] ]ht ~>3, if 12 is good, if ~o holds, and if ~r(x) = -1  V x e A ,  
we have 

~(4Lo)2T2(X)  = -1  Vx ~ Rh,t2 

L e m m a  2.2. We have 

P(I~ is not good) ~< e -~k 

with k = I hl - 26. 

Proof of  Lernma 2. 7. Let us first prove that a t ( x ) = - 1  V x e A  
~'t~(4Lo)2T2. Assume that there exists an x o e A  and s eI~ such that 
as 1(x)= - 1  V x e A  and ~rs(Xo)= +1. Then either as (x )=  +1 V x e A  or at 
time s there were at least two cuts in Q4L0 and a cluster C =  + with 
C c  QnLo. Both cases are impossible using (b) and (c) of the definition of 
112 good, respectively, since, by assumption, Ihf IAI/> 3. 

A 

[2 12 

Fig. 3 
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Let us now prove that during a good interval 12, the cluster of minuses 
in R~,I 2 grows under the dynamics, up to the complete covering of Ra,t2. 

Let yo~Rtl,t2\A be such that 3x, x 'eA,  with [X-yo[  = i x ' - y o [  = 1. 
If A is different from R~,t2, such a point must exist by hypothesis. 
The situation could be the one depicted in Fig. 3. We know that there 

exists a time s e [0, T2] such that we see the cuts of Fig. 4 with C{y0} = -1 .  
If at time s - 1 ,  as-l(yo)= +1, then clearly at time s, G(Yo)= -1 .  If 
already as ~(Y0)= -1 ,  then the set A1 = A  w {Yo} at time s -  1 enjoys the 
same property as A and so, by previous arguments, it cannot decrease at 
time s. In both cases A1 = A u { Yo} enjoys the same properties as A and 
it is stable. 

We now pick a new point Yl E R6d2\A 1 with the same property of Yo 
and repeat the argument. By iterating this argument l 112- [A] times, we fill 
up the whole Rt,.~2 with minus spins and the lemma is proved. 

Proof of Lemma 2.2. It is easily seen that 

P(I 2, is not good) 

<~ (4Lo)4T2e 3~ + (4Lo)2T2k(Lo)e-2~ /31hi 

+ (4Lo)2 T2k(Lo)e 3~ + (4Lo)46[-1 _ e-2~(1 _ e ~lhl)] r2 

+k(Lo)e 'lhJ ~< e-~ 26)fl 

if 0 < 6  < Ih[/3 and /3 is sufficiently large, where k (Lo)=  # {connected 
clusters in Q~L0}. 

The next step requires us to understand how much a sequence of 
"bad" (not good) intervals I f  may affect a rectangular droplet of minuses. 

Unfortunately, in order to solve the above problem, one has to 
distinguish among various situations in order to discard the most unlikely 
ones. 

yO • 
m I R 

f 
| �9 ~ 

! 

i 

• 
Fig. 4 
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D e f i n i t i o n s  

OZ" [0, N ]  ~- Jo ~< " b a d "  ~ - {3jo, 0 S - n ; I ~ i s  Vj, jo<~j~jo+n} 

~ O . N l _  {~Jo, O<<-Jo<~N-n; in the time interval S ~ =  ,-~J~J01 IJ~ at least 
one of the following events occurs: (a)3s~ ~Sn;  .at t ime s~ we 
have more  than 3 cuts in Q4/-0 and a cluster C c Q  4~, C= + ;  
(b) 3s~, s2 e S~, Sl ~ s 2 ;  at t ime st, i =  1, 2, there are at least 3 
cuts and a cluster C c  Q4L0, C =  +}  

~f~o,u~= {3j, O<~j<<,N-n; # { s e I ~ w  ... wI~+, in which there are ~>2 
cuts and at least a cluster C c Q  4r~ C= +;  or ~>3 cuts} > 7 }  

4L0 C i  = ~- ,  ~ 0 , N ~ _  {~SeI~w " WI2N; at t ime s there exist C~,..., C ~ =  ~.o , 
V i = I -  k , ~  ~ " ,= ,  ICi[ >jr} 

It is quite clear that  the complements  of the events ~ ,  ~,  J r ,  and 
give some control  on the loss of minus spins during the time interval 
[-0, N ( 4 L J  T2]. This justifies the in t roduct ion of the following event: 

[0, N ]  c .~E0'N1--(o~0'NI)~C~(fg~0'N~)~C~(~.,7 ) C~(JC/rC0'N~) ~ (2.3) 
-~ n,7,r 

P r o p o s i t i o n 2 . 1 .  Let o - i f { - 1 , 1 }  A be such that  o - ( x ) = - I  
Vx e Rh& ~ Q~/-0 with (11 - 1 )(I2 - -  1 ) / >  r o. 

[0, N ]  Suppose that  ~0 c~ ~.,~.r holds with r = r o. 7 = (11 - 2) /x (12 - 2), n, N 
arbi t rary;  then if I} is "good,"  for some j ~< N we have 

trj(4Lo)2r2(x) = - 1  Vx 6 Rl~,12 

Remark. In other  words, if ~ r,~EO, N3 J-o . . . .  ,,~,r occurs with n, 7, r, N as in 
the proposi t ion,  then the dynamics not  only cannot  destroy the cluster of 
minuses Rh,z2, but  it is even able to reconstruct  it. 

Notice that  this result is s t ronger  than L e m m a  2.1, since we allow in 
the sequence I~ w --. w I2N some "bad"  intervals I~. 

Proof of Proposition 2.1. The proposi t ion clearly follows from 
L e m m a  2.2 if we can prove that  at the end of an arbi t rary  sequence 
S,,=I2ow ... WI~o+,, in UN=II~  with n'<n such that  I 2 is "bad"  Vj, 
Jo ~< J ~< Jo + n' and I~0_ ~, I~+,  + 1 are " g o o d , '  then the set 

2 - {x;  ~(jo+.)(4Lo)~-~(x) = - 1  } ,a R~ ,~  

contains a cluster A with the proper ty  ~ of L e m m a  2.2. 
Suppose that  at the beginning of the sequence the set A coincides with 

Rh t2. Since .~EO, N1 C ~ 0  holds, we have that  in the sequence Sn we have at , - -  n,~,r 

most  7 times s~,..., s,r such that  at st we have exactly two cuts and one 
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cluster C =  +, C c 4L0 Qo , and at most one time s ~ with exactly three cuts 
and one C =  +, C c ,oaL0 ~ 0  " 

Thus, during the sequence Sn we can lose at most 7 + 2 minus spins in 
Rh.t2. in this estimate we have taken into account the fact that with three 
cuts we can create a site x which can be disconnected from the rest of the 
droplet of minuses by only a single cut. This site is considered to be lost 
anyway (see Fig. 5). 

From the above considerations it follows that the cluster of minuses 
inside Rht 2 has an area greater than or equal to 1~ l 2 - -  ~ - -  2/> (l~ - 1 ) ( 1 2  - -  l ) 

and thus its spins can never flip to + 1 all together because of our choice 
of r and the definition [o N] of X/r ' . Since 7 = (11 - 2)/x ( l  2 - 2), it also follows 
that the clusters of minuses enjoy property ~ of Lemma 2.2 and the 
proposition follows. | 

The next step is obviously an estimate from below of the probability 
[ON] of the event ~ , > r  for a given choice of the parameters N, n, 7, r. This can 

be done with the help of the next lemma, whose elementary proof is 
postponed to Appendix B. 

k e m m a  2.3. Given n, 7, r, if fi is large enough, we have, for any 
N >~n" 

(a) 
(b) 

p( o W [ON] ~ ~,- = . : ,  ,-.~ Ne -ken with k Ihl - 26. 

p ( ~ O N l )  <<.2Nn2e2~-elhlk(Lo), where k(Lo) is as in the proof of 
Lemma 2.2. 

( C )  [ON] 26)2 p(~vf ,,~ ) <~ Ne-e(iht with 6 < Ihl/2. 
(d) p(~g~ON]) < N(4Lo)2 r2k(Lo)e-lhtre 

It follows from the above estimates and from Proposition 2.1 that if we 
start at time t = 0 with a rectangular region of minus spins Rht 2 c Q~Lo with 

nhl < - 1 ) ( z 2 -  a) > 2 + ]hi (l~ ^ 12) 

and ll /x l 2 < lc(h), see (2.7), this droplet will persist with only small 
fluctuations with large probability up to a time %,12 of the order of 

zh ~ 2 .~ N T 2 4 L  z P( ( ~ ~~ u])~ w ~ )  - ~ (2.4) 

I I 
t - -  I - -  
J _ _ J  I+-U 

Fig. 5 
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with 

n = 3(ll /x 12) 

Y = (ll - 2) ^ (1 e - 2) 

r = (11 - 1 )(12 - 1 ) 

N=exp (fl {2 A I ( 'h ' -  36)(ll- 2) A (12- 2) + ~]}) 

with these values of the parameters  we get that,  by L e m m a  2.3, 

[ O N ]  c P((N, ,y , r )  ) <~e-ae--+0 as fi--+ao 

It  follows f rom the proof  of L e m m a  1.1 in Appendix A that  P ( N ; )  goes 
to zero as fl --, oo much  faster than p(N~0u)),~ if Lo is taken, e.g., equal to 
Lo = [1/[hl3]. 

We thus get the impor tan t  result that  the typical resistance time (up to 
small f luctuations concentra ted at the corners)  of a droplet  of minus spins 
Rt~z2 with 

[hi (I~ - 1 ) ( l  2 - -  1) > 2 + [hi (l~ A 12) (2 .5)  

is of order  
zU: ,,~ 4L2e21~e~(2 t ,  {(lhl - 3f i ) [_( / l  - -  2 )  A (12 2 ) ]  + 6 / 2 } )  (2.6) 

It  remains to discuss the mechanism responsible for the growth of the 
cluster of minus spins. 

Given the square Q~, I even, we set (xiy,), i =  1, 2, 3, 4, to be couples 
of n.n. sites such that  each one of them is not  in Q~ but  is n.n. of Q~ (see 
Fig. 6) and we set 

2 2 2 is "bad"  only because 3s~I,~+, zt . i=inf{k~> 1 :12 ,  Ik+  2 are "good,"  Ik+  1 
such that  at t ime s we see the cut drawn in Fig. 6 (the dashed 
bonds)  and C{x,y,} = + } 

F r o m  the definition of good intervals 12 we immediately  have the 
following proposi t ion:  

P r o p o s i t i o n  2 .2 .  Let [h] 12> 2 and let a be such that  a(x)= -1 
Vxe A c Q~ such that  A enjoys proper ty  ~ of L e m m a  2.1. 

Then if zz. ~= 1, we have 

63(4Lo)2Tz(X) = -1 Vx ~ Rl, l+ i 

with R~,z+I as in Fig. 7. 
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Xl yl  

X4 . 

y 4 .  

Q~ 

IX2 
i 

l y2 
I 

. __a  

(i=2) 

X3 y3 

Fig. 6 

From the explicit definition of rl, i it follows from a direct computation 
that the typical values of ~l,i are of order exp(2/~). This is in fact 
approximate, by the inverse of the probability of observing a cut of four 
bonds in a time interval of length T 2. This result, combined with (2.6), tells 
us that if the resistance time of a square Qt becomes larger than ~t,~. T 2 ~- 
exp(4/?), then the square Qt of minuses has a greater tendency to grow than 
to shrink. One immediately finds that l should be such that 

(Ihl  - 3 6 ) ( l - 2 )  > 2 

xl  y l  

Q~ 
RI,I+I 

Fig. 7 
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i.e.~ 

l > l ~ ( h ) -  + 3  

if 6 is sufficiently small. 
We are finally in a position to construct the event ffsub(j). 
We set: 

(viii) 

(ix) 

(2.7) 

(i) T o = inf{k ~> 0: at time sk = k(4Lo) 2 T 2 -  1 we cut all the bonds 
between the square Qo EIhl 1/q 2 and its complement and 
any cluster C inside Qo EIhwt/q 2 becomes minus one} 

"~0 ~ T2"(0 

(ii) 1~=2[-2]h[ 1/2]+2i, i = 0 , 1  ..... 

(iii) n~=3li,  v s = / , - 2 ,  r ~ = ( l i - l )  2. 

(iv) N~ = 4 exp{fl[2/x ([h[ - 36)(/g- 2) + 6/2] }, Nto t = Z~:~,~t~(h) N~. 

(v) a,=ro+Y~o<~k<~iNkT 2. 

(vi) o _  {0 < U j 4 }  c~ {U,~< < X j 2 }  ~ i - -  ~ 721,,1 72li,2 

{ N J 2  <~ "~l,,3 < 3/4N,} c~ { 3/4N~ ~< %.4 < N,} 
("3 ,~ [ON']\u4~lE'cl''k''%k + 3] i :  1, 2,... 

--nt,7~,rl 

(vii) o///= S~,_ a#o, where i =  1, 2 ..... 

S, is the shift operator defined in Section 1. 
oXasub 2 o = { 'Co- -0}  (3 {/Ntot iS g o o d }  Oi: l ,~ l c (h>~[ i .  

S t~sub j > e2fl.  #~b(j)  = (j-  11N,o,r~{4L0~~ , 

The event ~sub ~o can be understood in simple words. With t o = 0  we 
construct, for any configuration a at time t - -0 ,  a square Q~ of minuses. 
Then the event ~//1 forces this square to grow to a square ~ot~+2 =- Q~ within 
the time N l ( 4 L o ) 2 T 2  and to resist (up to small fluctuations) up to this time. 
In turn the event % enlarges Q~ to Q~ and so on. 

Thus, it follows immediately from Lemma 2.1 and Propositions 2.1 
and 2.2 that the event ~sub(j) satisfies the requirements (a), (b), (d) listed 
at the beginning of this section. 

It remains to prove that 

lim P(3e  2~ <<. j <~ t J ( 4 L o )  2 T2: gsuU(j) holds) = 1 (2.8) 

This clearly follows if we can prove that 

t t~ e - 2~ - ae P(  g~oUb ) --. oO (2.9) 

when fl --+ o% because of the independence of the gsub(j)'s. 
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We have, by construction, 

P(#~o~b)=P(%=O)P(I2,o, iSg ~176 1~ P(~i) (2.10) 
i:l~ <. lc(h ) 

Thus, we need an estimate from below of the probability of 
SO_I)N,o~T2(4L0/:~'~, or, using translation invariance w.r.t, the time, of ~#o. 

We have 

Ni(J 1 )/4 ~< k] <. N~( i/4 ) 
j =  1,...,4 

P(~~ j=kj}j=l,.. . ,4) (2.11) 

Using the definitions of ~ o  and of vl,,j, we get that 

~'~ m {z,,.j = kj, j =  1 ..... 4} 
= (-] ~[ON,]\U4=I[#y,kJ +3]  

ni. yt.rr 
2 i 2 2 2 is bad only because ~seI~+~ ("1 {04:1 { k,, 1~,+2 are good; Ik~+~ 

such that at time s we have the cut ~ - - ~  and C{~,)} = +}} (2.12) 

Thus, using Lemma 2.2 and 2.3, we get, by explicit computation, that 
the rhs of (2.11) is bounded from below b y  

( (1 - -e -kB)2{1-  [ I -  e-4~(1 - - e  2 f i ]h l ) ] (4L~  4 

[ ( j  1)/4]N,<~Kj<~(j/4)N, 
j = 1, . . . ,4  

x { 1 -  [Nie-k~"'+2Nin~e 2~ alhl 

+ N~e-~(ihl 2a)y, + Ni(4Lo)2 T2k(Lo)e-Ihl~y,] } (2.13) 

with k = [hi - 26, which, in turn, after the insertion of the values ri, ne, N,, 
7~, gives 

e 8 f l  -,- 4 ih l  l,/~ - 8 Ih l  ~ - 8,5 l ,~ 

if l i <~ lc(h). 
Thus, using (2.10), we get 

(2.14) 

P(~o )/> exPlh- ~ I~ exp[-gfl+41hllifl-gfl([hl+6li)] 
i : l ~ l c  

 oxp[ (2.15) 

where c is a constant independent of h if h < 1 and 5 ~ h 2. 
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Thus, if we take 

we get (2.9). 

Martinelli et  aL 

,2,6, 

The discussion of the subcritical regime is completed. | 

3. CONSTRUCTION OF THE EVENT 80: THE SUPERCRITICAL 
REGIME 

We complete here the construct ion of the event go by exhibiting an 
event g~uper such that: 

(i) The event go defined in Section 2 is (0, 4Lo)-cylindrical and 
P(go) --+ 1 as fl --+ m. 

(ii) If {vb(t), ~.c(t)} e ~;uper (.~ ~0 for j(4Lo)2T2 <~ t <~ t#, 
j<~t~e -ae-2~, then, for any a e  { - 1 ,  1} A such that 

we have 

O'j(4L0)2 T 2 ( X )  = --1 VX ~ Qt 6 

% ( x )  = - 1  Vx E ~oC~2L~ 

with Lo >> Ic(h), e.g., L 0 = l/[hi 3. 

~ s u p e r  ~__ Csuper and then set _j  Clearly, it suffices to construct  ~o 
S j  ~,~ super  

(4Lo) 2 T2 ~  " 

The idea is very simple. If at time t = 0 we start with a square Q2~ of 
minuses supercritical, i.e., l >>, l j 2 ,  then the resistance time of this cluster 
(in the sense specified in Section 2) is at least 

T2 e2P + 613/2/~ e4/~ + a/~ (3.1) 

Thus, during this time it is extremely likely that we will be able to con- 
struct a protuberance like the one of Fig. 6 of Section 2 and thus enlarge 
the square t~+2 Iterating this argument ( L o - l )  times, we reach a square ~50  " 

Q~0 in a time of order  

e4/~ + a/U2 

Once the droplet  Q ~  is formed, if Lo is chosen large enough, then it 
is an easy mat ter  to show that it will be able to resist much longer than t~. 
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We proceed now very much  as in Section 2. We set 

N = exp(2/?) 

= = + 3 (3.2) 

4 
n - - - -  

Ih]-26 

3 

Ihl 

and we set 

~#/'~ = 1,..., 4} ~ ~,,,,r[~ (3.3) 

~ i  = SiN(4Lo)2T2 ~/~0 (3.4) 

As in Section 2, one checks immediate ly  that  ~U ~ c~ N o occurs and if a is 
such that  

G(x) = - 1  Vx ~ Q~ 

then, if 12_ 1 is "good,"  

Thus,  the event 

(3.5) 

O'N(4Lo)2T2(X) = --1 Vx ~ ~ot~l~+ 1 (3.6) 

L0 

~/r ~ ~//J~ 0 {I~0uiSg ~ 1 7 6  } (3.7) 
t = O  

with Lo=l/lh[ 3, L o l L  , is such that  ~ c ~ N '  o implies that  for 
configurat ion cr with G ( x ) =  - 1  Vx s Q~ at t ime t = LoN(4Lo) 2 T2, 

any 

lim p ( ~ r  1 (3.9) 

It is very easy to check that,  because of the choice (3.2) of the parameters  
li, N, Y, n, and r, one has 

~t(x) = - 1  VxeQ~ Lo (3.8) 
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that is, using the independence of the events ~ ,  i = 0, 1,..., Lo, 

lim P ( ~ F ) =  1 (3.10) 
, 8 ~ o o  

Notice that, as announced, the time scale involved here is 

L o ( 4 L o ) 2 N T 2  ~ T 4 

It remains to analyze the resistance of the droplet z0n2c~ of minus spins. 
What we have to prove is that this droplet is able to resist, up to small 

fluctuations, for a time much larger than the nucleation time t~. 
Since the nucleation time is much longer than T4. We cannot use 

directly the event , @ [ 0 N ]  with N " ~  t J T 2  because now its probability is no ~ n, y , r  

longer close to one. This is so because of the event ~f[oNl (see Section 2); 
in fact, on a time scale t~ we will observe almost surely more than three 
contemporary cuts inside n4L~ kS0 " 

[ON] In conclusion, we have to relax the conditions characterizing -~.,~,r in 
such a way that its probability becomes again close to one without, 
however, destroying the droplet r~2L0 ~-~0 " 

We set 

with 

(i) 

(ii) 

~ / "  = (~g" n ,~" [0N0]  ) c  (""l ( , ~ [ O ' N o ] ]  r' O ( ~ / ~ r [ 0 N 0 ] )  c 
\ - - n , ~  / 

No = t~/(4Lo) 2 T2 

r = n = y = 8/h 2 

Using Lemma 2.3, one sees immediately that 

lim P ( Y ) - -  1 
/ ? 4  +co  

P r o p o s i t i o n  3.1. Let Lo = 1/Ihl s. Suppose that the event 

12 ~A/ c~ ~o c~ { N0 is good } holds 

Then, if Ihj '~ 1, for any a such that 

a ( x )  = - 1  Vx  e Q~Lo 

we have 

att,(x) = - 1  Vx ~ Q~Lo 

(3.11) 

(3.12) 

(3.13) 
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Assuming the proposition, let us complete the construction of the event 

12 is good} (3.14) ~O~'~super ____ ~/" 0 { S LoN( 4Lo)2 T2 ~/" } ('3 { LoN + No 

Because of (3.10), (3.13), l i m ~  +2 p(g~up~r)= 1 and because of (3.8) and 
Proposition 3.1, ..(osuper also satisfies the second requirement stated at the v 0 

beginning of the section. 

Proof of Proposition 3. 1. Let S,, = I~ u ..- w If+, ,  0 ~< j + n ~< No, 
n ~< 8/]hi be a bad sequence and let us compute how many minus spins in 
Q2Lo o can we lose during S~ starting from a droplet of minuses equal to 
Q2Lo We claim that the total loss during Sn cannot exceed 47r 2. Let 0 " 

sl . . .sk ,  k <~ 7 <~ 8/h2, be the times in Sn at which we have at least two cuts 
and one cluster C c Q4Lo, C = +, or more than two cuts. At each time si, 
i = 1,..., k, we can lose, by the definition of JV, at most r spins - 1 .  For 
te(si, S,+l) we lose only those clusters of minuses, of size less than or 
equal to r, that can be obtained with only one cut, or isolated clusters of 
size ~r .  

Let now l >  ~ and 2Lo/[is an integer and let us partition the square 
Qo 2c~ into (2Lo/[) 2 squares 0j  of side {. By construction, if at time st + 1 all 
the spins inside a given square Qj happen to be minus one, then each one 
of them will not flip to + 1 up to time sz+~. Moreover, the number of 
squares Qj such that 

~,(x) = -1  Vx e Q; 

and there exists a site xj ~ Qj such that 

as,+l(xj) = + l  

is obviously bounded by r. 
Therefore, the total loss of minuses during the time interval s, cannot 

exceed 

1 
7r([)2<~47r2<lh]7 (3.15) 

if 2Lo > 2 and [hi is sufficiently small. 
If we now choose L o = 1/Ih] s with ]hJ small enough, it is easy to check 

using (3.15) that at the end of the bad sequence Sn there exists in C~2Lo ~0 
a subset A where the spins are minus one and such that property .~ 
of Lemma 2.1 applies to A. Thus, the good interval If+,+ 1 is able to 
reconstruct the whole droplet zoC~ZL~ of minuses. The proposition follows by 
applying the above argument to all the bad sequences in [0, No]. | 
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APPENDIX  A 

Proof  o f  Lemma 1.1. Let 

~.'~= {3t~< t~; at time t 3 C =  +with  If[ >~Lo and Cc~ QX 2Lo 5a~ ~ } (A1) 

Then we have 

P(~'~)~< ~ ~.~ Z P c 
= " ~ A  j 1 k /4 xq �9 " ' .Vtk 

x q  :~. Xlk ~ A 
f o r / : ~  k 

(A2) 

If we can prove that 

P ~ ~ exp [ -2 ( /~ )k ]  
j 1 

(A3) 

Vk >1 n/4 and ;t(fl) a suitable constant, then (A2) may be bounded by 

n(;) 
p(Nc)<~ ~ e x(~)k<~2"exp[-2(fl)n/4] (A4) 

k = n / 4  

Thus we have to prove (A3) with 

Lhl Lo 2 
2(/~) - 4 

Let 

2/-0 X,= #{j<<.k;3C= + a t  time t, ICI ~ t o ,  C~Qx,j r  (A5) 

We observe that if we denote by ~, the family of clusters C, c#t = {C,}, 
with the property that any Cz= + at time t, IC,I ~>Lo, Ctc~Q2L~ for 
some j = 1,..., k and Ct c~ Cr = ~ if l r l ,  then the cardinality ~)f ~t as a 
subset of A satisfies 

I~,1 = ~  Ic,f >~toXt (A6) 
l 

This is obvious since any [c,I is greater than Lo and if a given Cl intersects 
n 2L0 exactly m squares ~xj , J = 1,..., m, then if L > 4Lo, 

I C~l ~ mL - 1 >~ mLo 
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Thus, with these considerations in mind, we estimate (A3) by 

�9 .. ~ ~ P(X,=k,;~,=cg, Vt<<.t~) (A7) 
O<~kl<~k O<~kt[~<~E ~l'-'c~tfl 

~t<~t[3k t >1 k I%1 ~> Lokt 

Because of the construction of the dynamics, (A7) in turn is bounded by 

~ exp ( - f l ,h l  ~ [~,l) 
kl---kt~ %-- -%/~  
S'k t>~k I%1 ~> L0kf 

~< 2 exp(-fl-~--Lo 2 kt 2exp -~5-1~1 
k l - - -k t#  t = l  / \ ~ f  
Y~kt>~k 

In order to evaluate the last sum, we expand again 

(A8) 

Ihl I~l) ?oxp( 
l = l  ' xq . . . . .  t CI c~ Ox2q LO #..Q~; ICll ~ LO 

Xtl ~ xq, 
Q2L lval '  CI c~ xqO .~5;ICl[ >~Lo 

For fllhl large enough, we have 

r k exp - -2-j ]Cjl) (A9) 

~, exp(-fll-~lCl)<~(2Lo)2exp(-fl~Lo) 
C ca Q2Lo r ,Q5 

ICi ~>Lo 

which in turn gives for the rhs of (A9) the bound 

(A10) 

l+exp ( -P-T"lhJ Lo)(2Lo) 2 (All) 

By inserting (All) into (A8), we ge~ that the rhs of (A8) is estimated by 

Ihl ~ Ihl ~ Ihl *~ 

(A12) 

which is finally bounded by 

Ihl +2k) exp ( -fl  ~- Lok (A13) 
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for fl large enough and Lo such that 

( Ihl Lo) (2Lo) 2 < 1 t e exp \ - fi ~ -  

e.g., Lo~- l/lh[ 3, 0 < [ h [ , ~ l .  
The lemma is proved. | 

Proof of Lemma 1.2. As in the proof of Lemma 1.1, we write 

e l  
m >l n / 4  xz l . . . x~m j 1 

x 9 r x~ k 

k r  

If p(fl) denotes 1 - P(g:r Vx, then we get 

p(~c)~ ~ (n )  Fp(fi)]m<exp(_k(fl)4) 
m >1 n / 4  

for a suitable constant k(fl) .-" +oo as fi z +oo, 
--ln[24p(fl)]. | 

e.g., k(fl)= 

A P P E N D I X  B 

Proof of Lemma 2.3. Part (a) trivially follows from Lemma 2.2. 
For part (b) we have 

<~ 2Nn2k(Lo)e 2~-131hl 

iffi>>l. 
For part (c) 

n ( 4 L 0 )  2 T 2  

P(~,[~ ~< sUP (N--n) ~ ~, 
J i 7 S l  - �9 �9 s t  

S k E l  2 . . . . .  I~+ m 

~< N ~ [ e - 2 ' -  ~lhL 2k(Lo)]i [n(4Lo)2 T2]' 
l - -  T 

<<. N e  / 3 ( I h l  - 2 6 ) ~  

[-2e-2/~ Ihl#k(Lo)] i 

if fi>> 1 and 0 < b <  Ih[/2. 
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F o r  pa r t  (d), 

t r ivial ly  holds.  

P( j / / ' r  EON] ) ~< N L  2 T 2 k ( L o ) e  -~lhlr 

R E F E R E N C E S  

1. R. H. Swendsen and J. S. Wang, Nonuniversal critical dynamics in Monte Carlo simula- 
tions, Phys. Rev. Lett. 58 (1987). 

2. F. Martinelli, E. Olivieri, and E. Scoppola, On the Swendsen-Wang dynamics. I. 
Exponential convergence to equilibrium, J. Stat. Phys., this issue; Rigorous analysis of 
low temperature stochastic Ising models: Metastability and exponential approach to equi- 
librium, Preprint, Rome (1989). 

3. E. Jordao-Neves and R. Schonmann, CriticaI droplets and metastability for a Glauber 
dynamics at very low temperatures, Preprint, University of Sao Paulo (1989). 

822/62/1-2-ll 


